
Eagle Knights 2007: Four-Legged League

Alfredo Weitzenfeld1, Alonso Martínez1, Bernardo Muciño1, Gabriela Serrano1,
Carlos Ramos1, and Carlos Rivera1

1 Robotics Laboratory Lab, ITAM, Rio Hondo 1,

01000 DF, Mexico
alfredo@itam.mx

Abstract. In this paper we present the system architecture for our
Four Legged RoboCup Soccer Team – Eagle Knights. We
describe the system architecture: Vision, Localization, Sensors,
Kinematics, Wireless Communication and Behaviors.

Keywords: Four-legged, robocup, autonomous, vision,
architecture.

1 Introduction

RoboCup [1] is an international effort to promote AI,
robotics and related field primarily in the context of soccer
playing robots. In the Four Legged League, two teams of
four robots play soccer on a relatively small carpeted
soccer field. In addition to soccer playing, we have used
our robots in other research projects, including biorobotics
[2] and human-robot coaching [3].

Fig. 1. Four-Legged System Architecture.

2 History of Achievements in Previous
Competitions

-US Open 2004 in New Orleans, USA: Our first participation
in a official competition.
-RoboCup 2005 in Osaka, Japan: This was the first
participation in the World Cup where we reached the second
round.
-1st Latin American Open 2005 in Sao Luis, Brazil: We
obtained the 3rd place.
-RoboCup 2006 in Bremen, Germany: In the second
participation in the World Cup we reached the second round
again.
-2nd Latin American Open 2006 in Santiago, Chile: In this
tournament we obtained 1st place, our best result in an
official RoboCup competition where we played a round
robin against TeamChaos from Spain, TecRams from
Mexico, UChile and UdeCans both from Chile. We played
the final against UChile.

3 RoboCup Four-Legged System Architecture

Our four-legged system architecture includes the following
modules:

• Sensors. This module receives information from the

physical sensors. We are particularly interested in vision
and motor position feedback.

• Vision. The vision module receives a raw image from
the camera, the main system sensor, and performs
segmentation over the image. The module then
recognizes objects in the field, including goals, ball,
landmarks and other players.

• Motion. This module controls robot movements, such
as walk, run, throw the ball, turn, move the head, etc.
It receives commands from the behavior module with
output sent to the corresponding actuators representing
individual leg and head motor control.

• Actuators. In addition to individual head and leg
motor control, the system includes actuators for
turning off and on head LEDs.

• Behaviors. This module makes decisions affecting
higher level robot actions. It takes input from the
sensors and the localization system to generate
commands sent to the motion and actuators modules.

• Wireless Communication. This module receives all
commands from the external Game Controller. The
system transmits data between all robots that includes
information such as player id, location of ball if seen,
distance to the ball, robot position and ball position.

• Localization. This module makes all the processing
necessary to obtain a reliable localization of the robot
in the field. In order to localize, our current model
requires the robot to perceive a combination of goals
and landmarks.

In the following sections, we explain in detail each one

of these modules.

3.1 Sensors

This module receives information from the color camera
and motor position feedback. The raw camera image is
passed directly to the vision module while information
received from motor positions are used in making certain
movement decisions at the behavior module, such as when
the robot is on its back.

3.2 Vision

This module is divided in two processes.

Calibration
The system is calibrated prior to the game. The regions of
interest are selected in a HSI color space and then
transformed to a YCrCb color space through a GUI that
uses photographies previously taken.

These regions are subsampled to reduce memory in the robot
at 12.5% of the original usage.

Segmentation and blob growing
Using the previously defined values, the 7 colors of the
game are assigned to objects in each image taken from the
field. The segmented pixels are grouped by regions (blobs)
for further processing.

Fig. 2. A sample image classified using our calibration system.
Real object images are shown on the right column, while classified
objects are shown on the left column.

Figure 2 shows sample output of the segmentation
calibration process.

After color regions are obtained, objects are recognized.
Objects in the field must fulfill certain requirements in
order to allow some confidence that the region being
analyzed corresponds to the object of interest. For
example, the ball must have green in some adjacent area
with similar criteria used to identify goals. The
identification of the landmarks is a little more complex,
nevertheless after more elaborated comparison landmarks
are identified. Finally, a data structure filled with object
positions and additional objects characteristics.

3.3 Motion

This module is responsible for robot motion control,
including in particular walking and kicking. We have
developed a number of different routines depending on
team roles. For example, the goalie has different motions
in contrast to other team players. This also applies to
different head kicks and movements in general.

3.4 Actuators

This module is responsible for turning off and on the head
and tail LEDs. This module receives commands from the
behavior module to indicate the particular action being
currently performed by the robot. This module also
displays the state of the Game Controller.

3.5 Behaviors

The behavior module receives information from sensors
and localization, sending output to robot actuators. In
defining our team robot behaviors, we specify three types
of players: Attacker, Defender and Goalie. Each one has a
different behavior that depends on ball position and Game
Controller.

Goalie basic behavior is described by a state machine
as shown in Figure 3:
• Initial Position. Initial posture that the robot takes

when it is turned on.

• Search Ball. The robot searches for the ball.

• Reach Ball. The robot walks towards the ball.

• Kick ball. The robot kicks the ball out its goal area.

Fig. 3. Basic Individual Goalie State Machine.

Attacker basic individual behavior is described by a
state machine as shown in Figure 4:
• Initial Position. Initial posture that the robot takes

when it is turned on.

• Search Ball. The robot searches for the ball.

• Reach Ball. The robot walks towards the ball.

• Kick Ball. The robot kicks the ball towards the goal.

• Explore Field. The robot walks around the field to find
the ball.

Fig. 4. Basic Individual Attacker State Machine.

3.6 Wireless Communication

This module receives commands from the Game
Controller and passes them to the Behaviors module
accepting connections using either TCP or UDP protocol.
This module is used to cooperation between robots for
have information about the state of the game and the
world.

4 Localization

An important part of playing soccer is being able to
localize in the field in an efficient and reliable way.
Localization includes computing distances to known
objects or landmarks, use of a triangulation algorithm to
compute exact positioning, calculate robot orientation
angles, and correct any resulting precision errors. A block
diagram for the algorithm is showin in Figure 5.

In the next section we describe our Localization system
based on 2006 rules. We are currently working on a new
version that will adapt to the new rules of the league. The
new Localization system is extended from the previous
versions and will take into account probabilistic methods
in conjunction with odometry data.

4.1 Distance to objects

The first step in localizing is to obtain the distance
between identified objects and the robot. It is important
that the robot can distinguish at least two marks when it
starts. After making several experiments, we developed a
simple algorithm that computes distances to objects by
using a cubic mathematical relationship that takes as
parameter the object area and returns as result the distance
to the object. In order to obtain this relation, we took a
large number of measurements at different distances from
the object that we are interested in. The distance range
used went from 15 centimeters to 4 meters. Beyond four
meters it became very difficult to distinguish between
objects and noise.

Fig. 5. Localization System block diagram.

Figure 6 shows the area versus distance function together
with the resulting standard deviation for this function.

Fig. 6. Upper diagram shows relation between area (Y axis) and
distance (X axis), while lower diagram shows the resulting standard
deviation.

We chose an interpolation function to match our data. Using
Matlab we calculated the coefficients for the cubical
segments of the interpolation (splines). Also, with this
method, we only need to calculate the coefficients offline
and load them in memory when the robot starts playing.
When we want to calculate a distance to an object, we just
have to evaluate a polynomial expression with the
appropriate coefficients and according to the following
equation:

 dcxbxaxxs +++= 23)(

We calculated the cubical function coefficients and tested
them using different distances. Results from these
computations are shown in Table 1.

(1)

Table 1. Results of the interpolation function.

4.2 Triangulation Algorithm

Following distance computation we apply a triangulation
method from two marks to obtain the position of the robot
on the field. Triangulation results in a very precise position
of the robot in a two dimensions plane. If a robot sees one
landmark and can calculate the distance to this landmark,
the robot could be anywhere in a circumference with
origin in the landmark, and radio equal to the distance
calculated. While a single is not sufficient for the robot to
compute its actual position, recognizing two landmarks
can already help compute a specific location from the
intersection of two circumferences, as shown in Figure 7.
Note that the robot could be in one of two intersection
points in the circumferences.

Fig. 7. Triangulation with two landmarks.

In Table 2 we show the results of the triangulation
algorithm. To test the algorithm we put the robot in an
arbitrary position in the field. Then we computed the
average distance obtained from multiple measurements
followed by an average error calculation. Note the large
difference between the true position and the computed
average.

Table 2. Results of triangulation algorithm.

Real Position [cm] Average [cm] Error [cm]
(50,80) (80.06,139.28) (30.06,59.28)

(160,90) (163.86, 104.44) (3.86, 14.44)
(265,80) (278.08,108.39) (13.08,28.39)
(65,185) (95.04, 195.87) (30.04, 10.87)

(170, 190) (175.25, 196.10) (5.25, 6.10)
(280, 210) (301.64, 222.44) (21.64, 12.44)
(70,290) (80.93, 303.52) (10.93, 13.52)
(186,300) (195.75, 313.52) (9.75, 13.52)
(285,300) (301.17, 315.51) (16.17, 15.51)
(65,380) (68.53, 414.64) (3.53, 34.64)

4.3 Angle Calculation

Once we find the robot position we need to find its
orientation to complete localization. We refer to two vectors
whose origin is the robot location and the end points are the
coordinates of the marks that we use as references for the
triangulation, as shown in Figure 8.

Fig. 8. Calculation of robot orientation.

4.4 Correction Algorithms

While testing our algorithm with a moving robot, we
noticed that in many occasions our data was not consistent
between two contiguous frames. To fix the problem we
added a correction algorithm taking historical data from
positions already calculated by the robot in obtaining the
average of these measurements. We reduced the variation
of the output signal for the triangulation algorithm by
using the following average filter function:

n

ix
xs

n

i
∑
== 0

)(
)((2)

Figure 9 shows sample output from this filter correction.
Our original signal produced variations of approximate
10%. By applying this filter we managed to reduce this
variation to less than 3%. See [5] for more details.

Fig. 9. Historical Average Filter.

After applying this correction algorithm, we tested the
system and obtained good results without affecting the
performance of the system. These results are shown in
Table 3.

Table 3. Final results for the localization system.

Region Real Position [cm] Average [cm] Error [cm]
1 (50,80) (69.6, 124.8) (19.6,44.8)
2 (160,90) (160.27, 92.95) (0.27,2.95)
3 (265,80) (270.83, 100.35) (5.83, 20.35)

4 (65,185) (81.76, 188.81) (16.76, 3.81)
5 (170, 190) (170.47, 193.41) (0.47, 3.41)
6 (280, 210) (294.86, 216.79) (14.86, 6.79)
7 (70,290) (75.09, 293.53) (5.09, 3.53)
8 (186,300) (189.9, 303.53) (3.90, 3.53)
9 (285,300) (289.36, 303.19) (4.36, 3.19)
10 (65,380) (65.63, 413.74) (0.63, 33.74)
11 (165,400) (170, 415.22) (5.33, 15.22)
12 (290,350) (305.8, 355.25) (15.80, 5.25)

Note that errors were computed by field regions, where the
complete field was divided into twelve similarly sized areas,
as shown in Figure 10. In some regions errors were larger
due to changes in illumination. Yet, when compared to the
20cm approximate AIBO size, worst errors were a bit less
than a full body length. Current work focuses in dividing the
field into differently sized regions depending on required
localization precision.

Fig. 10. Localization results by field region.

5 Conclusions

We have presented the system architecture for the Eagle
Knights Four-Legged team with special emphasis on our real
time localization system. The system calculates distances
with the help of an interpolation function producing good
results and in real time. The algorithms used allowed us to
estimated a reliable position for the robot without using
probabilistic methods like other teams do. We are currently
incorporating localization information as part of our game
playing strategy while adapting the algorithm to specific
regions in the field to produce better qualitative game
playing results as opposed to costly numerical accuracy.

Our team started competing in 2004 and has continuously
participated in both regional and world events. This work
is part of broader research we are pursuing in the robotics
laboratory at ITAM. One of the related areas is that of
human-robot interaction in the context of social cognition
where we are using soccer coaching as the application
domain, see [6] for sample videos. More information can
be found in http://robotica.itam.mx/.
Acknowledgments. This work is supported by French-
Mexican LAFMI, UC MEXUS CONACYT, CONACYT
grant #42440, and “Asociación Mexicana de Cultura,
A.C.” in Mexico.

References

1. RoboCup Technical Committee. “Sony Four Legged Robot
Football League Rule Book.” Mayo 2004. RoboCup.
Official Web Site URL:http://www.robocup.org

2. Flores Ando, F., and Weitzenfeld, A., 2005, Visual Input
Compensation using the Crowley-Arbib Saccade Model,
Proc. International Conference on Advanced Robotics
ICAR, Seattle, USA, July 17-20.

3. Weitzenfeld A and Dominey PF, Cognitive Robotics:
Command, Interrogation and Teaching in Robot Coaching,
RoboCup Symposium 2006, June 19-20, Bremen, Germany.

4. Martínez-Gómez, L.A., and Weitzenfeld, A., 2004, Real
Time Vision System for a Small Size League Team, Proc.
1st IEEE-RAS Latin American Robotics Symposium, ITAM,
Mexico City, October 28-2.

5. Martínez-Gómez, J.A, Weitzenfeld, A., 2005, Real Time
Localization in Four Legged RoboCup Soccer, Proc. 2nd
IEEE-RAS Latin American Robotics Symposium, Sao Luis,
Brasil, Sept 20-23.

6. Dominey PF and Weitzenfeld A, Videos for command,
interrogate and teach AIBO robots,
ftp://ftp.itam.mx/pub/alfredo/COACHING/

