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Abstract. In this paper we present the system architecture for our 
Four Legged RoboCup Soccer Team – Eagle Knights. We 
describe the system architecture: Vision, Localization, Sensors, 
Kinematics, Wireless Communication and Behaviors. 
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1   Introduction 

RoboCup [1] is an international effort to promote AI, 
robotics and related field primarily in the context of soccer 
playing robots. In the Four Legged League, two teams of 
four robots play soccer on a relatively small carpeted 
soccer field. In addition to soccer playing, we have used 
our robots in other research projects, including biorobotics 
[2] and human-robot coaching [3].  

 
Fig. 1. Four-Legged System Architecture. 

2   History of Achievements in Previous 
Competitions 

-US Open 2004 in New Orleans, USA: Our first participation 
in a official competition. 
-RoboCup 2005 in Osaka, Japan: This was the first 
participation in the World Cup where we reached the second 
round. 
-1st Latin American Open 2005 in Sao Luis, Brazil: We 
obtained the 3rd place. 
-RoboCup 2006 in Bremen, Germany: In the second 
participation in the World Cup we reached the second round 
again. 
-2nd Latin American Open 2006 in Santiago, Chile:  In this 
tournament we obtained 1st place, our best result in an 
official RoboCup competition where we played a round 
robin against TeamChaos from Spain, TecRams from 
Mexico, UChile and UdeCans both from Chile. We played 
the final against UChile. 

3   RoboCup Four-Legged System Architecture 

Our four-legged system architecture includes the following 
modules: 
 
• Sensors. This module receives information from the 

physical sensors. We are particularly interested in vision 
and motor position feedback. 

• Vision. The vision module receives a raw image from 
the camera, the main system sensor, and performs 
segmentation over the image. The module then 
recognizes objects in the field, including goals, ball, 
landmarks and other players. 



     

• Motion. This module controls robot movements, such 
as walk, run, throw the ball, turn, move the head, etc. 
It receives commands from the behavior module with 
output sent to the corresponding actuators representing 
individual leg and head motor control.  

• Actuators. In addition to individual head and leg 
motor control, the system includes actuators for 
turning off and on head LEDs. 

• Behaviors. This module makes decisions affecting 
higher level robot actions. It takes input from the 
sensors and the localization system to generate 
commands sent to the motion and actuators modules. 

• Wireless Communication. This module receives all 
commands from the external Game Controller. The 
system transmits data between all robots that includes 
information such as player id, location of ball if seen, 
distance to the ball, robot position and ball position. 

• Localization. This module makes all the processing 
necessary to obtain a reliable localization of the robot 
in the field. In order to localize, our current model 
requires the robot to perceive a combination of goals 
and landmarks. 

 
In the following sections, we explain in detail each one 

of these modules.  

3.1 Sensors 

This module receives information from the color camera 
and motor position feedback. The raw camera image is 
passed directly to the vision module while information 
received from motor positions are used in making certain 
movement decisions at the behavior module, such as when 
the robot is on its back. 

3.2 Vision 

This module is divided in two processes. 
 
Calibration 
The system is calibrated prior to the game. The regions of 
interest are selected in a HSI color space and then 
transformed to a YCrCb color space through a GUI that 
uses photographies previously taken. 
 

These regions are subsampled to reduce memory in the robot 
at 12.5% of the original usage. 
 
Segmentation and blob growing 
Using the previously defined values, the 7 colors of the 
game are assigned to objects in each image taken from the 
field. The segmented pixels are grouped by regions (blobs) 
for further processing.  

 

 

Fig. 2. A sample image classified using our calibration system. 
Real object images are shown on the right column, while classified 
objects are shown on the left column. 

Figure 2 shows sample output of the segmentation 
calibration process.  



After color regions are obtained, objects are recognized. 
Objects in the field must fulfill certain requirements in 
order to allow some confidence that the region being 
analyzed corresponds to the object of interest. For 
example, the ball must have green in some adjacent area 
with similar criteria used to identify goals. The 
identification of the landmarks is a little more complex, 
nevertheless after more elaborated comparison landmarks 
are identified. Finally, a data structure filled with object 
positions and additional objects characteristics.  

3.3 Motion 

This module is responsible for robot motion control, 
including in particular walking and kicking. We have 
developed a number of different routines depending on 
team roles. For example, the goalie has different motions 
in contrast to other team players. This also applies to 
different head kicks and movements in general.  

3.4 Actuators 

This module is responsible for turning off and on the head 
and tail LEDs. This module receives commands from the 
behavior module to indicate the particular action being 
currently performed by the robot. This module also 
displays the state of the Game Controller. 

3.5 Behaviors 

The behavior module receives information from sensors 
and localization, sending output to robot actuators. In 
defining our team robot behaviors, we specify three types 
of players: Attacker, Defender and Goalie. Each one has a 
different behavior that depends on ball position and Game 
Controller. 

Goalie basic behavior is described by a state machine 
as shown in Figure 3:  
• Initial Position. Initial posture that the robot takes 

when it is turned on. 

• Search Ball. The robot searches for the ball. 

• Reach Ball. The robot walks towards the ball. 

• Kick ball. The robot kicks the ball out its goal area. 

 

Fig. 3. Basic Individual Goalie State Machine. 

Attacker basic individual behavior is described by a 
state machine as shown in Figure 4: 
• Initial Position. Initial posture that the robot takes 

when it is turned on. 

• Search Ball. The robot searches for the ball. 

• Reach Ball. The robot walks towards the ball. 

• Kick Ball. The robot kicks the ball towards the goal. 

• Explore Field. The robot walks around the field to find 
the ball. 

 

Fig. 4. Basic Individual Attacker State Machine. 



     

3.6 Wireless Communication 

This module receives commands from the Game 
Controller and passes them to the Behaviors module 
accepting connections using either TCP or UDP protocol.  
This module is used to cooperation between robots for 
have information about the state of the game and the 
world. 

4 Localization 

An important part of playing soccer is being able to 
localize in the field in an efficient and reliable way. 
Localization includes computing distances to known 
objects or landmarks, use of a triangulation algorithm to 
compute exact positioning, calculate robot orientation 
angles, and correct any resulting precision errors. A block 
diagram for the algorithm is showin in Figure 5.  

 
In the next section we describe our Localization system 
based on 2006 rules. We are currently working on a new 
version that will adapt to the new rules of the league. The 
new Localization system is extended from the previous 
versions and will take into account probabilistic methods 
in conjunction with odometry data. 

4.1 Distance to objects 

The first step in localizing is to obtain the distance 
between identified objects and the robot. It is important 
that the robot can distinguish at least two marks when it 
starts. After making several experiments, we developed a 
simple algorithm that computes distances to objects by 
using a cubic mathematical relationship that takes as 
parameter the object area and returns as result the distance 
to the object. In order to obtain this relation, we took a 
large number of measurements at different distances from 
the object that we are interested in. The distance range 
used went from 15 centimeters to 4 meters. Beyond four 
meters it became very difficult to distinguish between 
objects and noise.  

 

 

Fig. 5. Localization System block diagram. 

Figure 6 shows the area versus distance function together 
with the resulting standard deviation for this function. 

 

Fig. 6. Upper diagram shows relation between area (Y axis) and 
distance (X axis), while lower diagram shows the resulting standard 
deviation. 

We chose an interpolation function to match our data. Using 
Matlab we calculated the coefficients for the cubical 
segments of the interpolation (splines). Also, with this 
method, we only need to calculate the coefficients offline 
and load them in memory when the robot starts playing. 
When we want to calculate a distance to an object, we just 
have to evaluate a polynomial expression with the 
appropriate coefficients and according to the following 
equation: 
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We calculated the cubical function coefficients and tested 
them using different distances. Results from these 
computations are shown in Table 1. 

 

(1) 



Table 1. Results of the interpolation function. 

 

4.2 Triangulation Algorithm 

Following distance computation we apply a triangulation 
method from two marks to obtain the position of the robot 
on the field. Triangulation results in a very precise position 
of the robot in a two dimensions plane. If a robot sees one 
landmark and can calculate the distance to this landmark, 
the robot could be anywhere in a circumference with 
origin in the landmark, and radio equal to the distance 
calculated. While a single is not sufficient for the robot to 
compute its actual position, recognizing two landmarks 
can already help compute a specific location from the 
intersection of two circumferences, as shown in Figure 7. 
Note that the robot could be in one of two intersection 
points in the circumferences. 

 
Fig. 7. Triangulation with two landmarks. 

 

In Table 2 we show the results of the triangulation 
algorithm. To test the algorithm we put the robot in an 
arbitrary position in the field. Then we computed the 
average distance obtained from multiple measurements 
followed by an average error calculation. Note the large 
difference between the true position and the computed 
average. 
 
Table 2. Results of triangulation algorithm. 

Real Position [cm] Average [cm] Error [cm] 
(50,80) (80.06,139.28) (30.06,59.28) 

(160,90) (163.86, 104.44) (3.86, 14.44) 
(265,80) (278.08,108.39) (13.08,28.39) 
(65,185) (95.04, 195.87) (30.04, 10.87) 

(170, 190) (175.25, 196.10) (5.25, 6.10) 
(280, 210) (301.64, 222.44) (21.64, 12.44) 
(70,290) (80.93, 303.52) (10.93, 13.52) 
(186,300) (195.75, 313.52) (9.75, 13.52) 
(285,300) (301.17, 315.51) (16.17, 15.51) 
(65,380) (68.53, 414.64) (3.53, 34.64) 

4.3 Angle Calculation 

Once we find the robot position we need to find its 
orientation to complete localization. We refer to two vectors 
whose origin is the robot location and the end points are the 
coordinates of the marks that we use as references for the 
triangulation, as shown in Figure 8. 
 

 
Fig. 8. Calculation of robot orientation. 



     

4.4 Correction Algorithms 

While testing our algorithm with a moving robot, we 
noticed that in many occasions our data was not consistent 
between two contiguous frames. To fix the problem we 
added a correction algorithm taking historical data from 
positions already calculated by the robot in obtaining the 
average of these measurements. We reduced the variation 
of the output signal for the triangulation algorithm by 
using the following average filter function:  
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Figure 9 shows sample output from this filter correction. 
Our original signal produced variations of approximate 
10%. By applying this filter we managed to reduce this 
variation to less than 3%. See [5] for more details. 

 

 
Fig. 9. Historical Average Filter. 

After applying this correction algorithm, we tested the 
system and obtained good results without affecting the 
performance of the system. These results are shown in 
Table 3.  

Table 3. Final results for the localization system. 

Region Real Position [cm] Average [cm] Error [cm] 
1 (50,80) (69.6, 124.8) (19.6,44.8) 
2 (160,90) (160.27, 92.95) (0.27,2.95) 
3 (265,80) (270.83, 100.35) (5.83, 20.35) 

4 (65,185) (81.76, 188.81) (16.76, 3.81) 
5 (170, 190) (170.47, 193.41) (0.47, 3.41) 
6 (280, 210) (294.86, 216.79) (14.86, 6.79) 
7 (70,290) (75.09, 293.53) (5.09, 3.53) 
8 (186,300) (189.9, 303.53) (3.90, 3.53) 
9 (285,300) (289.36, 303.19) (4.36, 3.19) 
10 (65,380) (65.63, 413.74) (0.63, 33.74) 
11 (165,400) (170, 415.22) (5.33, 15.22) 
12 (290,350) (305.8, 355.25) (15.80, 5.25) 

 
Note that errors were computed by field regions, where the 
complete field was divided into twelve similarly sized areas, 
as shown in Figure 10.  In some regions errors were larger 
due to changes in illumination. Yet, when compared to the 
20cm approximate AIBO size, worst errors were a bit less 
than a full body length. Current work focuses in dividing the 
field into differently sized regions depending on required 
localization precision. 
 

 

Fig. 10. Localization results by field region.  

5   Conclusions 

We have presented the system architecture for the Eagle 
Knights Four-Legged team with special emphasis on our real 
time localization system. The system calculates distances 
with the help of an interpolation function producing good 
results and in real time. The algorithms used allowed us to 
estimated a reliable position for the robot without using 
probabilistic methods like other teams do. We are currently 
incorporating localization information as part of our game 
playing strategy while adapting the algorithm to specific 
regions in the field to produce better qualitative game 
playing results as opposed to costly numerical accuracy. 



Our team started competing in 2004 and has continuously 
participated in both regional and world events. This work 
is part of broader research we are pursuing in the robotics 
laboratory at ITAM. One of the related areas is that of 
human-robot interaction in the context of social cognition 
where we are using soccer coaching as the application 
domain, see [6] for sample videos. More information can 
be found in http://robotica.itam.mx/. 
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