
Eagle Knights 2006: Four-Legged League

Alfredo Weitzenfeld1, Antonio Medrano1, Alonso Martínez1, Bernardo Muciño1,
Gabriela Serrano1, Carlos Ramos1, and Carlos Rivera1

1 Robotics Laboratory Lab, ITAM, Rio Hondo 1,

01000 DF, Mexico
alfredo@itam.mx

Abstract. In this paper we present the system architecture for our Four Legged
RoboCup Soccer Team – Eagle Knights. We describe the system architecture:
Vision, Localization, Sensors, Kinematics, Wireless Communication and
Behaviors, with special emphasis on our Localization System.

Keywords: Four-legged, robocup, autonomous, vision, architecture.

1 Introduction

RoboCup [1] is an international effort to promote AI, robotics and related field
primarily in the context of soccer playing robots. In the Four Legged League, two
teams of four robots play soccer on a relatively small carpeted soccer field. In
addition to soccer playing, we have used our robots in other research projects,
including biorobotics [2] and human-robot coaching [3].

Fig. 1. Four-Legged System Architecture.

2 RoboCup Four-Legged System Architecture

The general four-legged system architecture includes the following modules:

• Sensors. This module receives information from the pysical sensors. We are

particularly interested in vision and motor position feedback.
• Vision. The vision module receives a raw image from the camera, the main

system sensor, and performs segmentation over the image. The module then
recognizes objects in the field, including goals, ball, landmarks and other players.

• Motion. This module control robot movements, such as walk, run, throw the ball,
turn, move the head, etc. It receives commands from the behavior module with
output sent to the corresponding actuators representing individual leg and head
motor control.

• Actuators. In addition to individual head and leg motor control, the system
includes actuators for turning off and on head LEDs.

• Behaviors. This module makes decisions affecting higher level robot actions. It
takes input from the sensors and the localization system to generate commands
sent to the motion and actuators modules.

• Wireless Communication. This module receives all commands from the
external Game Controller. The system transmits a data structure between all
robots with information such as player id, location of ball if seen, distance to the
ball, robot position and ball position.

• Localization. This module makes all the processing necessary to obtain a reliable
localization of the robot in the field. In order to localize, our current model
requires the robot to perceive at least two marks, either goals or landmarks.

In the following sections, we explain in detail each one of these modules.

2.1 Sensors

This module receives information from the color camera and motor position feedback.
The raw camera image is passed directly to the vision module while information
received from motor positions are used in making certain movement decisions at the
behavior module, such as when the robot is on its back.

2.2 Vision

Our original vision architecture used image segmentation from the AIBO built-in
Color Detection Table. While this segmentation approach brought relatively good
results, we have started to use the raw image of the camera to do ourselves complete
software segmentation, where our calibration method can be used in conjunction with
either the CDT or our new software segmentation approach. We use external
segmentation configuration files for this purpose.

The vision system we use in the AIBOs builds from our existing Small Size team
vision system [4], which is relatively efficient and reliable, doing real time color and
object recognition in the field.

Segmentation is done by using different color thresholds, with a calibration system
allowing fast color selection. We take initial photos of objects of interest and then
manually select colors that we want to distinguish. At the end of this task, we test the
segmentation on real images checking if our calibration is working properly. Figure 2
shows sample output of the segmentation calibration process.

Fig. 2. A sample image classified using our calibration system. Real object images are shown
on the left column, while classified images are shown the on right column.

After color regions are obtained, objects are recognized. Objects in the field must
fulfill certain requirements in order to allow some confidence that the region being
analyzed corresponds to the object of interest. For example, the ball must have green
in some adjacent area with a similar criteria used to identify goals. The identification
of the landmarks is a little more complex, nevertheless after more elaborated
comparison landmarks are identified. Finally, a data structure is generated containing
object positions as well as additional objects characteristics.

2.3 Motion

This module is responsible for robot motion control, including in particular walking
and kicking. We have developed a number of different routines depending on team
roles. For example, the goalie has different motions in contrast to other team players.
This also applies to different head kicks and movements in general.

2.4 Actuators

This module is responsible for turning off and on the head and tail LEDs. This
module receives commands from the behavior module to indicate the particular action
being currently performed by the robot. This module also displays the state of the
Game Controller.

2.5 Behaviors

The behavior module receives information from sensors and localization, sending
output to robot actuators. In defining our team robot behaviors, we specify three types
of players: Attacker, Defender and Goalie. Each one has a different behavior that
depends on ball position and Game Controller.

Goalie basic behavior is described by a state machine as shown in Figure 3:
• Initial Position. Initial posture that the robot takes when it is turned on.

• Search Ball. The robot searches for the ball.

• Reach Ball. The robot walks towards the ball.

• Kick ball. The robot kicks the ball out its goal area.

Fig. 3. Basic Individual Goalie State Machine.

Attacker basic individual behavior is described by a state machine as shown in
Figure 4:
• Initial Position. Initial posture that the robot takes when it is turned on.

• Search Ball. The robot searches for the ball.

• Reach Ball. The robot walks towards the ball.

• Kick Ball. The robot kicks the ball towards the goal.

• Explore Field. The robot walks around the field to find the ball.

Fig. 4. Basic Individual Attacker State Machine.

2.6 Wireless Communication

This module receives commands from the Game Controller and passes them to the
Behaviors module accepting connections using either TCP or UDP protocol.

3 Localization

An important part of playing soccer is being able to localize in the field in an efficient
and reliable way. Localization includes computing distances to known objects or
landmarks, use of a triangulation algorithm to compute exact positioning, calculate
robot orientation angles, and correct any resulting precision errors. A block diagram
for the algorithm is showin in Figure 5.

3.1 Distance to objects

The first step in localizing is to obtain the distance between identified objects and the
robot. It is important that the robot can distinguish at least two marks when it starts.
After making several experiments, we developed a simple algorithm that computes
distances to objects by using a cubic mathematical relationship that takes as parameter
the object area and returns as result the distance to the object. In order to obtain this

relation, we took a large number of measurements at different distances from the
object that we are interested in. The distance range used went from 15 centimeters to
4 meters. Beyond four meters it became very difficult to distinguish between objects
and noise.

Fig. 5. Localization System block diagram.

Figure 6 shows the area versus distance function together with the resulting
standard deviation for this function.

Fig. 6. Upper diagram shows relation between area (Y axis) and distance (X axis), while lower
diagram shows the resulting standard deviation.

We chose an interpolation function to match our data. Using Matlab we calculated
the coefficients for the cubical segments of the interpolation (splines). Also, with this
method, we only need to calculate the coefficients offline and load them in memory
when the robot starts playing. When we want to calculate a distance to an object, we
just have to evaluate a polynomial expression with the appropriate coefficients and
according to the following equation:

dcxbxaxxs +++= 23)(

We calculated the cubical function coefficients and tested them using different
distances. Results from these computations are shown in Table 1.

(1)

Table 1. Results of the interpolation function.

3.2 Triangulation Algorithm

Following distance computation we apply a triangulation method from two marks to
obtain the position of the robot on the field. Triangulation results in a very precise
position of the robot in a two dimensions plane. If a robot sees one landmark and can
calculate the distance to this landmark, the robot could be anywhere in a
circumference with origin in the landmark, and radio equal to the distance calculated.
While a single is not sufficient for the robot to compute its actual position,
recognizing two landmarks can already help compute a specific location from the
intersection of two circumferences, as shown in Figure 7. Note that the robot could be
in one of two intersection points in the circumferences.

Fig. 7. Triangulation with two landmarks.

In Table 2 we show the results of the triangulation algorithm. To test the algorithm
we put the robot in an arbitrary position in the field. Then we computed the average
distance obtained from multiple measurements followed by an average error
calculation. Note the large difference between the true position and the computed
average.

Table 2. Results of triangulation algorithm.

Real Position [cm] Average [cm] Error [cm]
(50,80) (80.06,139.28) (30.06,59.28)
(160,90) (163.86, 104.44) (3.86, 14.44)
(265,80) (278.08,108.39) (13.08,28.39)
(65,185) (95.04, 195.87) (30.04, 10.87)

(170, 190) (175.25, 196.10) (5.25, 6.10)
(280, 210) (301.64, 222.44) (21.64, 12.44)
(70,290) (80.93, 303.52) (10.93, 13.52)

(186,300) (195.75, 313.52) (9.75, 13.52)
(285,300) (301.17, 315.51) (16.17, 15.51)
(65,380) (68.53, 414.64) (3.53, 34.64)

(165,400) (180.04, 421.87) (15.04, 21.87)
(290,350) (312.87, 362.08) (22.87, 12.08)

3.3 Angle Calculation

Once we find the robot position we need to find its orientation to complete
localization. We refer to two vectors whose origin is the robot location and the end
points are the coordinates of the marks that we use as references for the triangulation,
as shown in Figure 8.

Fig. 8. Calculation of robot orientation.

3.4 Correction Algorithms

While testing our algorithm with a moving robot, we noticed that in many occasions
our data was not consistent between two contiguous frames. To fix the problem we
added a correction algorithm taking historical data from positions already calculated

by the robot in obtaining the average of these measurements. We reduced the
variation of the output signal for the triangulation algorithm by using the following
average filter function:

n

ix
xs

n

i
∑
== 0

)(
)((2)

Figure 9 shows sample output from this filter correction. Our original signal

produced variations of approximate 10%. By applying this filter we managed to
reduce this variation to less than 3%. See [5] for more details.

Fig. 9. Historical Average Filter.

After applying this correction algorithm, we tested the system and obtained good
results without affecting the performance of the system. These results are shown in
Table 3.

Table 3. Final results for the localization system.

Region Real Position [cm] Average [cm] Error [cm]
1 (50,80) (69.6, 124.8) (19.6,44.8)
2 (160,90) (160.27, 92.95) (0.27,2.95)
3 (265,80) (270.83, 100.35) (5.83, 20.35)
4 (65,185) (81.76, 188.81) (16.76, 3.81)
5 (170, 190) (170.47, 193.41) (0.47, 3.41)
6 (280, 210) (294.86, 216.79) (14.86, 6.79)
7 (70,290) (75.09, 293.53) (5.09, 3.53)
8 (186,300) (189.9, 303.53) (3.90, 3.53)
9 (285,300) (289.36, 303.19) (4.36, 3.19)
10 (65,380) (65.63, 413.74) (0.63, 33.74)
11 (165,400) (170, 415.22) (5.33, 15.22)
12 (290,350) (305.8, 355.25) (15.80, 5.25)

Note that errors were computed by field regions, where the complete field was

divided into twelve similarly sized areas, as shown in Figure 10. In some regions
errors were larger due to changes in illumination. Yet, when compared to the 20cm
approximate AIBO size, worst errors were a bit less than a full body length. Current
work focuses in dividing the field into differently sized regions depending on required
localization precision.

Fig. 10. Localization results by field region.

4 Conclusions

We have presented the system architecture for the Eagle Knights Four-Legged team
with special emphasis on our real time localization system. The system calculates
distances with the help of an interpolation function producing good results and in real
time. The algorithms used allowed us to estimated a reliable position for the robot
without using probabilistic methods like other teams do. We are currently
incorporating localization information as part of our game playing strategy while
adapting the algorithm to specific regions in the field to produce better qualitative
game playing results as opposed to costly numerical accuracy.

Our team started competing in 2004 and has since then continuously participated
in regional or world events. This work is part of broader research we are pursuing in
the robotics laboratory at ITAM. One of the related areas is that of human-robot
interaction in the context of social cognition where we are using soccer coaching as
the application domain, see [6] for sample videos. More information can be found in
http://robotica.itam.mx/.

Acknowledgments. This work is supported by French-Mexican LAFMI, UC
MEXUS CONACYT, CONACYT grant #42440, and “Asociación Mexicana de
Cultura, A.C.” in Mexico.

References

1. RoboCup Technical Committee. “Sony Four Legged Robot Football League Rule Book.”
Mayo 2004. RoboCup. Official Web Site URL:http://www.robocup.org

2. Flores Ando, F., and Weitzenfeld, A., 2005, Visual Input Compensation using the
Crowley-Arbib Saccade Model, Proc. International Conference on Advanced Robotics
ICAR, Seattle, USA, July 17-20.

3. Weitzenfeld A and Dominey PF, Cognitive Robotics: Command, Interrogation and
Teaching in Robot Coaching, RoboCup Symposium 2006, June 19-20, Bremen, Germany.

4. Martínez-Gómez, L.A., and Weitzenfeld, A., 2004, Real Time Vision System for a Small
Size League Team, Proc. 1st IEEE-RAS Latin American Robotics Symposium, ITAM,
Mexico City, October 28-2.

5. Martínez-Gómez, J.A, Weitzenfeld, A., 2005, Real Time Localization in Four Legged
RoboCup Soccer, Proc. 2nd IEEE-RAS Latin American Robotics Symposium, Sao Luis,
Brasil, Sept 20-23.

6. Dominey PF and Weitzenfeld A, Videos for command, interrogate and teach AIBO robots,
ftp://ftp.itam.mx/pub/alfredo/COACHING/

